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The method proposed in [i] for closing the equations of develoed anisotropic turbulence - 
based on hypotheses regarding the character of the dependence of the spectral tensors on the 
wave vector (scaling and factorization) - is used here to calculate Jr rotational distortions 
of grid-generated turbulence. The closed system of equations which is obtained is divided 
into two subsystems. One of the latter (for the relative intensities) is linear, while the 
second subsystem reduces to an independent equation for the special function A characterizing 
the topological structure of the flow. Calculated results are compared with examples and the 
theory of rapid distortion. It is shown that the result of the distortion and, in particular, 
the character of the asymptotes, depend to a significant extent on the turbulence structure 
in the incoming flow. 

1. Equations in the Orientational Moments of the Spectral Tensor. A closed system of 
equations was obtained in [I] for secular fields of developed anisotropic turbulence. As was 
shown, this includes the integral scale rc, the tensor f(0)obtained by integration of the 

13 
spectral function fij over all possible orientations of the wave vector k, and the function 

A, given by the relation 
U ~im) A~(0) 

Imjij = ~J~J " (i. i) 

The tensor f(0) and the similarly determined tensor of the second-order orientational 
z] 

moments f(.Em) are directly connected with the Reynolds stress tensor <uiuj> and the "rapid" 
lj 

part of the pressure-strain-rate correlations r 

__--s~o)  <u~uD = ~ , ~  j ~ j ,  ,I)~j,, = ctrTSP~j, ( 1 . 2 )  

where P~j~P = ~tmlmjrT ~(zi)., Uzm~f = ~Ut/Oxm ; all of the notation conforms to the notation used in 

[ i ] .  

The equations for f(0). and rc, obtained in [i] from the Cray equation with the use of a 
ij 

hypothesis on the character of the dependence of the spectral functions on the wave vector, 
has the form 

afc q) 
U k ~  + (U i t~ ) ) .  _ ~Afi j^-.(o) _-- 2 (Pij)s; ( 1 . 3 )  

k 

O In v c 
Ua---g-~-zk = A + 2(rJrd)-~/~t2 ~. ( 1 . 4 )  

I n  a c c o r d a n c e  w i t h  ( 1 . 4 ) ,  t h e  q u a n t i t y  A - z  i s  c o n n e c t e d  w i t h  t h e  c h a r a c t e r i s t i c  t i m e  s c a l e  

o f  t h e  c h a n g e  i n  r c .  H e r e  r d ~ (Ns/<8>)~/4, td = (N/<e))-l/2 a r e  t h e  K o l m o g o r v  s c a l e s ;  v = 5 / ( 4  + 3 ~ ) ;  

SS t h e  s p e c t r a l  i n d e x ,  c h a r a c t e r i z i n g  t h e  f l u c t u a t i o n s  o f  e n e r g y  d i s s i p a t i o n .  

The f o l l o w i n g  a l g e b r a i c  e x p r e s s i o n  was o b t a i n e d  i n  [1]  f o r  <E> 

<s> = 3t~ "~ (rc/r~) -~lv <u~>/2, ( 1 . 5  ) 
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while for the tensor f(s - the convolutions of which with U are present in the right sides 
i3 

of Eqs. (1.3-1.4) - the following equation was obtained 

(i.6) 

In the calculations of the simplest case - axisymmetric contraction of a flow behind a 
grid - the components of the tensor Pij are expressed through A and f(?). The equation for 

13 
A is derived from (1.6) by permutation of the indices p, i; q, j with Upi, Uqj: 

~ o (pu) 2U~P ~ .  u~ ~ + 4 (t'U~)-- 9A (~'U) = 
(i.7) 

After completing certain transformations, we obtain the following from (1.7) with the 
use of (1.3) 

v d~ (~- i)(27, + t), (i 8) 
dz 

where x ~ 8U/Sx; the x axis is directed along the flow; U is the corresponding component of 
velocity; the superimposed bar denotes that the given quantity has been changed to dimension- 
less form by means of • 

System (1.3-1.4), (1.8) is easily integrated, the integration allowing us to obtain ex- 
plicit expressions for A, rE, f(~, and f(?) (and, thus, for the quantites <u~ ,<u~>, <~> ) as 
functions of x. zz 

2. General Form of Irrotational Distortion. In the present study, we use the method 
described in [i] to calculate the flows which develop behind a grid with irrotational distor- 
tion of a general form. In this case, 

t 0 0 ) 
= •  0 F 0 , - -0 ,5<~F<~t .  

0 0 - - F  --1 

(2.l) 

The bibliograph of the corresponding empirical studies is extensive; the cases most fre- 
quently investigated are those concerning axisymmetric contraction (F = -1/2) [2-6] and 
plane deformation, when F = 0 [7-11]. 

As in the calculation of axisymmetric contraction, we will limit our calculation to the 
turbulence characteristics on the channel axis. In this case, the above partial differential 
equations reduce to ordinary differential equations. Moreover, in light of the fact that most 
of the experimental results [7-10] are for the case when • and F are constant, we will take 
them to be constant in the present study as well. 

Flows of the given type are standard to a certain degree. Thus, on the one hand, they 
are most convenient for studying the interaction of pulsations with the average shear: the 
field of mean velocity is determined in this instance only by the geometry of the channel 
walls, the tensors <uiuj> and Pij are diagonal, and the diffusion terms in the equations for 

<uiuj> are small by virtue of the condition ~<u~> << U; on the other hand, the results being 
. . . . .  1 

obtained here are frequently used in selecting the values of constants in various semi-empiri- 
cal models [12]. 

Despite their relative simplicity, however, the given flows are somewhat difficult to 
calculate [13]. The difficulty persist despite the fact that the relative intensity of 
fluctuations of the different components is qualitatively described even by rapid distortion 
theory [14]. 

Let us proceed directly to the analysis of the system presented in part 1 for the case 
being discussed. Here, the unknowns are the intensities of all three components. Accordingly, 
both independent components of the tensor Pij are present in Eqs. (1.3) for f(?). In con- 

13 
trast to the case of axisymmetric contraction, single algebraic relation (I.I) is no longer 
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adequate to determine the latter. However, it is not hard to use Eq. (1.6) to obtain an 
additional relation which closes the system of equations. In fact, rearranging the indices 
P and Q with Upq in (L.6) and using (1.3), we have 

U~ ~(z~) B/~), ~mlii = ( 2 . 2 )  

where  B -= A 2 + • d A / d t ,  i = - 2  Y •  i s  a p a r a m e t e r  c h a r a c t e r i z i n g  t h e  d e g r e e  o f  d i s t o r -  
t i o n .  

Using (1.8) and (2.1), it is relatively easy to show that at F = -1/2 Eq. (2.2) coin- 
cides with (i.I). 

After performing certain calculations included in the Appendix, we use (i.i) and (2.2) 

to find expressions linking Pij with A and f(0): 
i3 

(N+~Z_ 3 (B§ i))/,r176 --  (F_  i ) 2Pn  (F-- i) (F+2)  (2 3) 

--(F+O)/(~.+ ~ (N- -X(F  + ~) + F)~ (~ 

2>:~ = (N + ~ - :  (F + t))/(,~) § ( ? _  ~) (2F + ~) 

- - ( F  + i)) "<~ + ( 2 F ~  (B - - A ( F  + i) + F)~% ). 
(2 .4)  

After completing some other, rather lengthy calculations z we can use Eqs. 
reduce Eq. (1.7) to an independent equation for the function A: 

+3A~7 t +2 a-A(F ~ + F + I)+ F(F + I)=O. 
dt 2 

(2.3-2.4) to 

Its general solution has the form (s = exp (-t/2)) 

= l--~2 +FD2I-F/2--(F + l) Dsl(F+l)/2 ( 2 . 5 )  
l-1/2+ Dzl--F/2+ D3l(Y+D/z 

o r ,  e q u i v a l e n t l y ,  A = -2 s  d i n  u / d s  where  u = Z - l / :  + D 2 s  + D 3 s  D2 and D 3 a r e  

c o n s t a n t s .  

Using e x p l i c i t  e x p r e s s i o n  ( 2 . 5 )  f o r  A, we can w r i t e  Eqs.  ( 2 . 3 - 2 . 4 )  f o r  P i j  in  t h e  more 
compact form: 

2P = ! ~f(o). 
u (2.6) 

Here, Pand f(0) are column vectors comprised of the diagonal components of the tensors Pij 

f(0).; ~ is a matrix of the form 
13 

31_1/~ 

= I - -  (F + 2) l -~/2 

\ (F-- t)Z - ~  

- -  2 (F + t) D2l -p/~ 

3FD~I -F/~ 

(l - -  F) D2 l-~/2 

(2F + i )  D31 (F+I)/2 

(F + 2) Dsl (F+1)/2 l "  

- -  3 (F + l) D~l(~+l)/~/ 
( 2 . 7 )  

Finally, with allowance for (2.5-2.7), tensor equation (1.3) is easily reduced to a sys- 
tem of three linear homogeneous differential equations with variable coefficients: 

d~(~ = ( 71-1/2 . 7 -il -- 5) I(F+I)12~(0) ~ut T + (3 F - -  2) D~l -F/2 (3F + D3~ / , n  - -  

. . . .  --F/~(0) t~ D/(~+l)/z,(o). - - 2 ( 2 F + l ) w 2 t  123 + 2 ( 2 F +  / 3 Jss, 
d~(O) 

4u/ :~t ~ 2(F + 2) ,-I/~do) n l  + ((3 --  2F) 1-1/2 + 7FD~t -F/z - -  
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-- (5F + 3) Dfl (F+1)12) J~2~(~ + 2 (F + ~)'~' -'-'z~r~ ,(y+~)12+(o)+33, 
dr(0) 

�9 33 = 2 ( F  - -  1) 7-1/~+(o) _ 2 ( f  - -  " . . . .  F/2~<o) 4ul ~ ~ :n  1) u2~ ~. + 

+ ((2t 7 + 5) 1-1/2 + (5F + 2)n~l -F/2 - -  7(F + l)Dal(e+l)/2)](~ ~. (2.8) 

In the special case (F = -0.5), Eq. (2.5) and the first equation of (2.8) reduce to 
relations found in [i]: 

) dl(~ 
- -  t 3 - -  i U - "  11 "~+(@) 
A -~ -Z t -~- ~l  3 ' dx = " ~ 1 1 1  (~ "-~ D2 + D 3 ) .  

3. Problem of Initial Conditions. The equations obtained in part 2 actually have no 

empirical constants, while the initial values of the functions fij(~ are easily found from 

the experimental conditions on the basis of the first equation of (1.2). At the same time, 
difficulties are encountered when attempting to find the initial values of the function A 
and its derivative (or, equivalently, the parameters D 2 and D~). 

First of all, it is necessary to set up a fairly sophisticated spectral experiment in 
order to determine these values. In connection with this, we will obtain an explicit repre- 
sentation for the constants D 2 and D~ so as to clarify their importance in relation to the 
turbulence spectrum. With allowance for Eqs. (2.5), relations (A.I), (A.2) presented in the 

appendix for the components of the tensor F(~ can be written in the form 
lj 

j(11) /--1/2 D2l--X/2 #0) ( 3 .1  ) 

When s = i, we find from (3.1) that 

I) /(~) (I) D2 ~22) (I) 
_ _ - ij (3 2) I+D~+D~-- -~J+<~ ' ~+D~+D~ f~V~" 

in accordance with (3.2), the constants D 2 and D s are determined by the initial values of the 
components of the tensor of second-order orientational moments. 

A second difficulty is connected with the specifics of the given class of slows, speci- 
fically: the condition • = const implies a jump in the derivative of mean velocity at the 
beginning of the distortion section. As a result, the derivatives of <uiuj> and r c will also 
probably be discontinuous at t = 0. Proceeding on the basis of Eq. (1.4), we can reach a 
similar conclusion in regard to the function A. This means that D 2 and D 3 cannot be unam- 
biguously determined from the characteristics of the incoming flow in the present case. 

However, there are other general considerations which make it possible to specify the 
region of possible values of D 2 and D 3. As a starting point, we will use the well-known 
inequality [15] 

f * 
ij~i~ ~ 0 ( 3.3 ) 

(~ i s  an a r b i t r a r y  v e c t o r ) .  One c o n s e q u e n c e  of  Eq. ( 3 . 3 )  i s  t h e  r e l a t i o n  <u~><u~> ~ <utu2> 2 

[16], which is essentially a constraint on the values that can be taken by the zeroth-order 
moments. It is not difficult to obtain a similar relation for second-order moments. In 
particular, choosing as r the vector Kis ~ (K denotes a diagonal matrix), after we integrate 

the left side of inequality (3.3) over all 8 we obtain the form Kis It follows from 

the conditions of its positive-definiteness that f(~)f(~) ~ (f(~))2. ~gr isotropic (in 

the sense f(~ s ~ 8ij) initial conditions with s = i, with allowance for (3.2) we obtain 
lJ 

the following expression from the last inequality 

( D 3 - - D 2 - -  t) 2 ~ 4 D v  (3.4) 
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The corresponding region of possible values of D 2 and D 3 is shown in Fig. i. It is 
bounded by a parabola whose symmetry axis coincides with the straight line D 2 = D 3 (line i). 

0 Similar results are obtained when the flow at the inlet is asymmetrical: f(~ = f(al' 

~(0 , <u~>/<u~> = an , z~ = af(~ z~ (i.e. a). As example parabolas corresponding to the values 

a~ = 1.5 and 0.75 (lines 2 and 3) are shown in Fig. i. 

4. Conditions of Axial Symmetry. The problem of finding the values of D 2 and D 3 has 

an additional aspect which is deserving of separate consideration. If we proceed as in rapid 

distortion theory and use isotropic parameterization Fij ~ (6ij - 0i8 j) at t = 0 for the 

spectral tensor, then moments of any order can be calculated directly. However, it was shown 
in [i] that the concept of isotropic turbulence constitutes a very coarse model of actual 
turbulent flow, which can evidently not generally occur in the given case. This conclusion 
finds support from the fact that, within the framework of the proposed method, axisymmetric 
models also prove inadequate. Specifically, if the axis x I corresponds to the direction of 
undistorted flow, then at x I = 0 it follows from the condition of axial symmetry that 

I t  i s  n o t  d i f f i c u l t  t o  f i n d  from t h e  l a s t  e q u a t i o n  o f  ( 4 . 1 )  t h a t  P22(0)  = P 3 3 ( 0 ) .  
From this, with allowance for (2.6) and (2.7) we obtain 

( 4 . 1 )  

a (2Fi+ : l ) -  (4F+ 5)Ds ( 4 . 2 )  
D~ = 4s -- i 

With allowance for Eqs. (3.2), the second condition of (4.1) yields D 2 = D 3. As a result, 

we find from (4.2) that D 2 = D a = a/4. 

Thus, at first glance, assuming that the incoming flow is axially symmetric makes it 
possible to unambiguously determine the parameters D 2 and D 3. Moreover, with isotropic (rela- 
tive to f(0) initial conditions, when a = i, D 2 = D 3 = 0.25 (this point coinciding with the 

ij 

vertex of the parabola bounding the region (3.4)), while 6 = 0.5. Here, the last value 
differs only slightly from that obtained in [i] from a comparison with experimental data on 
axisymmetric contTac~ion. 
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However, this difference is of a fundamental character: near values of ~ close to 0.5, 
there is a significant change in the character of the asymptote of the quantity <u~>/<u~>, 

i.e., at $ = 0.5 we find from Eq. (42) in [i] that <u~>/<u~> = 1 + 2~ -3 § I~ At the same 

time, at $ > 0.5, this magnitude decreases monotonically to zero. This is the pattern seen 
in most experiments. The solutions of system (2.8) are similarly (relative to the parameters 
D 2 andD3) sensitive in the general case, when F # -0.5. 

In sum, we can make the following conclusion: the character of energy redistribu~tion 
among the components as a result of external distortions depends to a large extent on satis- 
faction of conditions of axisymmetry (more exactly, the degree to which they are not satis- 
fied) of the incoming flow in relation to the components of the tensor fiSm). This conclu- 

Ij 
sion is indirectly supported, by the appreciable scatter of the empiricial data for convergent 
nozzles and, in particular, the anomalous results in [4]. An increase in the components 
<u~> was seen in the latter study on the contraction section. The above conclusion is also 
consistent with the conclusions reached in [17-19] on the topological nontriviality of the 
turbulence structure and the substantial effect of the corresponding parameters on evolution 
of the flow. 

5. Some Results of Numerical Calculations. For the sake of definiteness, in this section 
we present results pertaining to the case F = 0. As was noted in part 4, while solving system 
(2.8) we found that there was a high degree of sensitivity with regard to the values of D 2 
and D 3. As an example, Fig. 2 shows the dependence of the anisotropy parameter K = (<u~> - 
<u~>)(<u~> + <u~>) on in ~ for different D 3 when D 2 = i. Curves 1-3 correspond to I) 3 = 0, 
0.i, and 0.5. 

A significant role is played by the point D 3 = 0, D 2 = 1 in the region of possible 
values of D 2 and D3: at such parameters, the value of K and the relative intensities of the 
different components change monotonically - as in rapid distortion theory. However, this is 
the extent to which the results agree with the given theory. For example, the asymptotic 
value of <u~>/<q2> (<q2> ~ <u~>) turns out to be equal to one, rather than 0.5. 

i 
As is known [9-11], the rate of change in intensities is lower in experiments than the 

rate predicted by rapid distortion theory. Moreover, the estimate 0.5-0.7 is obtained for 
the asymptotic value of <u~>/<q=>. Such features of the empirical data are reproduced by 
the calculation if values somewhat greater than zero are used for D 3. 

As an illustration, we ex .m?ineda third series of experiments [9]: plane distortion, 
anisotropic initial conditions, and the attainment of a presumably asymptotic state charac- 
terized by relative intensities of 0.I, 0.37, and 0.53 at the end of the distorting section 
(~ 7~2). Townsend [7] obtained a somewhat different estimate for these values: 0.19, 
0.33, and 0.48. This difference may be evidence of the high de~ree of sensitivity in rela- 
tion to initial anisotropy. Figure 3 shows the results of calculations corresponding to the 
conditions in the indicated experiments. ~n the figure, the number of the curve corresponds 
to the index i in <u~>/<q2> (with no summation carried out over i). Also, D= = i. It is 
evident that the val~e of <u~>/<q2> at ~ ~ 8 actually changes little. However, this; region 
corresponds to a shallow maximum rather than an asymptote. The value of <u~>/<q2> at the 
point of the maximum depends to a considerable extent on D 3. It coincides with 0.53 if we 
choose D 2 = 0.035. The corresponding relative intensities <V~>/<q2> and <u~>/<q2> are equal 
to 0.15 and 0~30 in this case, these figures agreeing rather well with the above-cited 
empirical estimates. 

On the whole, the change in intensities which occurs at D 3 ~ 0 takes place in a complex 
manner: the values of <u~>/<q2> and <u~>/<q=> pass through maximum and minimum points and 
then asymptotically approach zero and one. As was noted in [9], even calculations performed 
in accordance with rapid distortion theory indicated the potential for such an unexpected 
evolution and the existence of extreme points. However, the theory indicated this only for 
values of F close to one. In addition, the function <u~>/<q2> was seen to have a maximum on 
several experimental curves in [7, 8]. However, it had been integrated as a result of per- 
turbations at the outlet and, moreover, the degree of flow distortion was relatively slight 
(~ = 4 and 6). On the whole, the question of the possibility of reversal of the asymptote 
and the existence of anomalous intercomponent energy transfer for high degrees of deforma- 
tion remains unanswered. 
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Appendix. With allowance for the identity f($$) = f(0), we can easily use Eqs. (I.i) 
lJ ij 

and (2.2) to obtain algebraic relations expressing the components of a second-rank orienta- 

tion tensor in terms of f(0~, A, and B: 
. ~  ij 

~11) t 
~J ---- (F + 2) (t -- F) ( B +  A - - F ( F +  I))/~); ( A . 1 )  

~C2,) = t (B + FA --  (F + t))/ij.(~ (A. 2) 
,ij (2Fq- i) (F-- 1) 

= U~ f(~i) with allow- On the other hand, inserting matrix (2.1) into the definition Pij ~m mj �9 

ance for the identity f(~i ) = 0 (the incompressibility condition), we have 

Pij = (F + 2)f~ i) + (2F + 1) /~ 0. (A .3 )  

Taking advantage of the symmetry of f(~) with respect to its superscripts and sub- ij 
scripts and making use of the identity Pii = 0, we can use (A.3) to derive two equations 

which link P11 and P22: 

F + 2 ~)1~ = (F 4- 2) 2:11) 
2F -f- t 2F + t + (2F + 1) ~2), 

(F -- ~)~ ~(2~) ~(33) 3 P2~ -- >11 ~-~ ~ J~2 -- (F + 2),33 �9 F + 2  --'= 

After completing some simple but lengthy calculations using (A.I) and (A.2), we can 
use the above relations to obtain Eqs. (2.3-2.4) from the main text. 
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PHENOMENOLOGICAL DESCRIPTION OF TWO-VELOCITY 

MEDIA WITH RELAXING TANGENTIAL STRESSES 

V. N. Dorovskii and Yu. V. Perepechko UDC 530.1 

Tangential stresses are generated and subsequently relax during the filtration process 
of high-temperature solutions (or melts) through an enclosing island. The stresses generated 
as well as their relaxation dynamics start determining, in turn, the filtration mechanics of 
the fluid phase leading to a self-contained interaction process of the continua under consi- 
deration. 

The concept of effective elastic deformation was suggested in [i] to describe the relaxa- 
tion of tangential stresses is a viscoelastic medium. By introducing it the authors succeeded 
in generalizing the Maxwell relaxation model to the case of substantial medium deformation. 
This is one of the principal approaches in nonlinear filtration theory. The generalization 
of the Maxwell model to filtration media within the approximations of small deformations and 
low velocities of the filtering fluid was investigated numerous times in the literature (see, 
fo~ example, [2]). To the best of the authors' knowledge, the extension of the Maxwell model 
to the case of nonlinear island deformation and high fluid filtration rates is not available 
in the literature. 

Under conditions of filtration of a viscous fluid through viscoelastic medium the 
effective elastic deformation must be introduced somewhat differently than was done in [i]. 
A theory using the concept of effective el~stic deformation must be compatible with general 
physical requirements: conservation laws and the Galileo relativity principle. 

Below we obtain a system of differential equations, describing the relaxation of tangen- 
tial stresses of a viscoelastic island during its self-consistent interaction with a filter- 
ing viscous fluid. The necessary requirement on the initial deformation of the state of the 
medium is established. The system of equations describes both compact and noncompact two- 
velocity continua. 

For a basis of the general theory one must construct a formalism of elastic interaction 
of the island with the filtering fluid in the reversible hydrodynamic approximation. To 
describe the filtration process within the continuum approach we introduce two velocity 
fields: u - the velocity of motion of an elastic continuum with particle density Pl, and 
v - the velocity of motion of a fluid with partial density P2, filtering through the elastic 
continuum. Two such mutually penetrable continua can interact through a friction force f, 
which is not present in the reversible approximation, and a reaction force being in hydro- 
dynamics proportional to gradients of thermodynamic quantities. Besides, the set of two 
continua is a hydrodynamic system for which conservation laws are valid, being in the case 
of reversible motion 
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